Set-valued Hermite interpolation
نویسندگان
چکیده
The problem of interpolating a set-valued function with convex images is addressed by means of directed sets. A directed set will be visualised as a usually non-convex set in Rn consisting of three parts together with its normal directions: the convex, the concave and the mixed-type part. In the Banach space of the directed sets, a mapping resembling the Kergin map is established. The interpolating property and error estimates similar to the point-wise case are then shown; the representation of the interpolant through means of divided differences is given. A comparison to other set-valued approaches is presented. The method developed within the article is extended to the scope of the Hermite interpolation by using the derivative notion in the Banach space of directed sets. Finally, a numerical analysis of the explained technique corroborates the theoretical results.
منابع مشابه
Constrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملHermite Interpolation with Directed Sets
The problem of interpolating a set-valued function with convex images is addressed by means of directed sets. A directed set will be visualised as a usually nonconvex set in R consisitng of three parts, the convex, the concave and the mixed-type part together with its normal directions. In this Banach space, a mapping resembling the Kergin map is established. The interpolating property and erro...
متن کاملGabor (super)frames with Hermite Functions
We investigate vector-valued Gabor frames (sometimes called Gabor superframes) based on Hermite functions Hn. Let h = (H0, H1, . . . , Hn) be the vector of the first n+ 1 Hermite functions. We give a complete characterization of all lattices Λ ⊆ R such that the Gabor system {e2πiλ2th(t − λ1) : λ = (λ1, λ2) ∈ Λ} is a frame for L(R,C). As a corollary we obtain sufficient conditions for a single H...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 163 شماره
صفحات -
تاریخ انتشار 2011